Struct nalgebra::linalg::Bidiagonal [−][src]
The bidiagonalization of a general matrix.
Implementations
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, [src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
pub fn new(matrix: MatrixMN<N, R, C>) -> Self[src]
Computes the Bidiagonal decomposition using householder reflections.
pub fn is_upper_diagonal(&self) -> bool[src]
Indicates whether this decomposition contains an upper-diagonal matrix.
pub fn unpack(
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>, [src]
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
Unpacks this decomposition into its three matrix factors (U, D, V^t).
The decomposed matrix M is equal to U * D * V^t.
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>, [src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
Retrieves the upper trapezoidal submatrix R of this decomposition.
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>, [src]
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
Computes the orthogonal matrix U of this U * D * V decomposition.
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>, [src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
Computes the orthogonal matrix V_t of this U * D * V_t decomposition.
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>, [src]
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
The diagonal part of this decomposed matrix.
pub fn off_diagonal(
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>, [src]
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
The off-diagonal part of this decomposed matrix.
Trait Implementations
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, [src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
fn clone(&self) -> Bidiagonal<N, R, C>[src]
pub fn clone_from(&mut self, source: &Self)1.0.0[src]
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy, [src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, [src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
Auto Trait Implementations
impl<N, R, C> !RefUnwindSafe for Bidiagonal<N, R, C>
impl<N, R, C> !Send for Bidiagonal<N, R, C>
impl<N, R, C> !Sync for Bidiagonal<N, R, C>
impl<N, R, C> !Unpin for Bidiagonal<N, R, C>
impl<N, R, C> !UnwindSafe for Bidiagonal<N, R, C>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> Same<T> for T[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>, [src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>[src]
pub fn is_in_subset(&self) -> bool[src]
pub fn to_subset_unchecked(&self) -> SS[src]
pub fn from_subset(element: &SS) -> SP[src]
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T[src]
pub fn clone_into(&self, target: &mut T)[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>, [src]
V: MultiLane<T>,