Files
addr2line
adler
aead
aes
aes_gcm
aes_soft
ahash
aho_corasick
ansi_term
anyhow
approx
arrayref
arrayvec
asn1_der
asn1_der_derive
async_channel
async_executor
async_global_executor
async_io
async_mutex
async_process
async_std
collections
fs
future
io
net
option
os
path
pin
result
rt
stream
string
sync
task
unit
vec
async_task
async_trait
asynchronous_codec
atomic
atomic_waker
atty
backtrace
base58
base64
base_x
bincode
bip39
bitflags
bitvec
blake2
blake2_rfc
blake2b_simd
blake2s_simd
blake3
block_buffer
block_cipher
block_padding
blocking
bs58
bstr
bumpalo
byte_slice_cast
byteorder
bytes
cache_padded
cfg_if
chacha20
chacha20poly1305
chrono
cid
cipher
clap
concurrent_queue
const_fn
constant_time_eq
cpp_demangle
cpuid_bool
cranelift_bforest
cranelift_codegen
cranelift_codegen_shared
cranelift_entity
cranelift_frontend
cranelift_native
cranelift_wasm
crc32fast
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
crunchy
crypto_mac
ct_logs
cuckoofilter
curve25519_dalek
data_encoding
data_encoding_macro
data_encoding_macro_internal
derive_more
digest
directories
directories_next
dirs_sys
dirs_sys_next
dns_parser
dyn_clonable
dyn_clonable_impl
dyn_clone
ed25519
ed25519_dalek
either
env_logger
environmental
erased_serde
errno
event_listener
exit_future
failure
failure_derive
fallible_iterator
fastrand
fdlimit
file_per_thread_logger
finality_grandpa
fixed_hash
flate2
fnv
fork_tree
form_urlencoded
frame_benchmarking
frame_benchmarking_cli
frame_executive
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
frame_system_rpc_runtime_api
fs_swap
funty
futures
futures_channel
futures_core
futures_diagnose
futures_executor
futures_io
futures_lite
futures_macro
futures_rustls
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
generic_array
getrandom
ghash
gimli
globset
h2
handlebars
hash256_std_hasher
hash_db
hashbrown
heck
hex
hex_fmt
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
idna
if_watch
impl_codec
impl_serde
impl_trait_for_tuples
indexmap
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
instant
integer_sqrt
intervalier
iovec
ip_network
ipnet
itertools
itoa
js_sys
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_ipc_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
kv_log_macro
kvdb
kvdb_memorydb
kvdb_rocksdb
lazy_static
lazycell
leb128
libc
libm
libp2p
libp2p_core
libp2p_core_derive
libp2p_deflate
libp2p_dns
libp2p_floodsub
libp2p_gossipsub
libp2p_identify
libp2p_kad
libp2p_mdns
libp2p_mplex
libp2p_noise
libp2p_ping
libp2p_plaintext
libp2p_pnet
libp2p_request_response
libp2p_swarm
libp2p_tcp
libp2p_uds
libp2p_wasm_ext
libp2p_websocket
libp2p_yamux
librocksdb_sys
libz_sys
linked_hash_map
linked_hash_set
linregress
lock_api
log
lru
maplit
matchers
matches
matrixmultiply
memchr
memmap2
memoffset
memory_db
memory_units
merlin
minicbor
minicbor_derive
miniz_oxide
mio
mio_extras
mio_named_pipes
mio_uds
miow
more_asserts
multibase
multihash
multihash_derive
multistream_select
nalgebra
base
geometry
linalg
names
nb_connect
net2
node_template
node_template_runtime
nohash_hasher
num_bigint
num_complex
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
openssl_probe
owning_ref
pallet_aura
pallet_authorship
pallet_balances
pallet_collection
pallet_exchange
pallet_grandpa
pallet_graph
pallet_nft
pallet_nftdao
pallet_randomness_collective_flip
pallet_session
pallet_sub
pallet_sudo
pallet_timestamp
pallet_transaction_payment
pallet_transaction_payment_rpc
pallet_transaction_payment_rpc_runtime_api
parity_db
parity_multiaddr
parity_scale_codec
parity_scale_codec_derive
parity_send_wrapper
parity_tokio_ipc
parity_util_mem
parity_util_mem_derive
parity_wasm
parity_ws
parking
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pdqselect
percent_encoding
pest
pest_derive
pest_generator
pest_meta
pin_project
pin_project_lite
pin_utils
polling
poly1305
polyval
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prometheus
prost
prost_derive
psm
pwasm_utils
quick_error
quicksink
quote
radium
rand
rand_chacha
rand_core
rand_distr
raw_cpuid
rawpointer
rayon
rayon_core
ref_cast
ref_cast_impl
regalloc
regex
regex_automata
regex_syntax
region
remove_dir_all
retain_mut
ring
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustls_native_certs
rw_stream_sink
ryu
safe_mix
salsa20
sc_basic_authorship
sc_block_builder
sc_chain_spec
sc_chain_spec_derive
sc_cli
sc_client_api
sc_client_db
sc_consensus
sc_consensus_aura
sc_consensus_babe
sc_consensus_epochs
sc_consensus_slots
sc_consensus_uncles
sc_executor
sc_executor_common
sc_executor_wasmi
sc_executor_wasmtime
sc_finality_grandpa
sc_informant
sc_keystore
sc_light
sc_network
sc_network_gossip
sc_offchain
sc_peerset
sc_proposer_metrics
sc_rpc
sc_rpc_api
sc_rpc_server
sc_service
sc_state_db
sc_telemetry
sc_tracing
sc_tracing_proc_macro
sc_transaction_graph
sc_transaction_pool
schnorrkel
scoped_tls
scopeguard
scroll
scroll_derive
sct
secp256k1
secrecy
serde
serde_derive
serde_json
sha1
sha2
sha3
sharded_slab
signal_hook
signal_hook_registry
signature
simba
slab
smallvec
snow
socket2
soketto
sp_allocator
sp_api
sp_api_proc_macro
sp_application_crypto
sp_arithmetic
sp_authorship
sp_block_builder
sp_blockchain
sp_chain_spec
sp_consensus
sp_consensus_aura
sp_consensus_babe
sp_consensus_slots
sp_consensus_vrf
sp_core
sp_database
sp_debug_derive
sp_externalities
sp_finality_grandpa
sp_inherents
sp_io
sp_keyring
sp_keystore
sp_offchain
sp_panic_handler
sp_rpc
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_serializer
sp_session
sp_staking
sp_state_machine
sp_std
sp_storage
sp_tasks
sp_timestamp
sp_tracing
sp_transaction_pool
sp_trie
sp_utils
sp_version
sp_wasm_interface
spin
stable_deref_trait
static_assertions
statrs
stream_cipher
strsim
structopt
structopt_derive
strum
strum_macros
substrate_bip39
substrate_fixed
substrate_frame_rpc_system
substrate_prometheus_endpoint
subtle
syn
synstructure
take_mut
tap
target_lexicon
tempfile
termcolor
textwrap
thiserror
thiserror_impl
thread_local
threadpool
time
tiny_keccak
tinyvec
tinyvec_macros
tokio
future
io
loom
macros
net
park
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_io
tokio_named_pipes
tokio_reactor
tokio_rustls
tokio_service
tokio_sync
tokio_uds
tokio_util
toml
tower_service
tracing
tracing_attributes
tracing_core
tracing_futures
tracing_log
tracing_serde
tracing_subscriber
trie_db
trie_root
try_lock
twox_hash
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
universal_hash
unsigned_varint
untrusted
url
vec_arena
vec_map
void
waker_fn
want
wasm_bindgen
wasm_bindgen_backend
wasm_bindgen_futures
wasm_bindgen_macro
wasm_bindgen_macro_support
wasm_bindgen_shared
wasm_timer
wasmi
wasmi_validation
wasmparser
wasmtime
wasmtime_cache
wasmtime_cranelift
wasmtime_debug
wasmtime_environ
wasmtime_jit
wasmtime_obj
wasmtime_profiling
wasmtime_runtime
wast
wat
webpki
webpki_roots
winapi
wyz
x25519_dalek
yamux
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
/*!
  Crate `linregress` provides an easy to use implementation of ordinary
  least squared linear regression with some basic statistics.
  See [`RegressionModel`] for details.

  The builder [`FormulaRegressionBuilder`] is used to construct a model from a
  table of data and a R-style formula. Currently only very simple formulae are supported,
  see [`FormulaRegressionBuilder.formula`] for details.

  # Example

  ```
  use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};

  # use linregress::Error;
  # fn main() -> Result<(), Error> {
  let y = vec![1., 2. ,3. , 4., 5.];
  let x1 = vec![5., 4., 3., 2., 1.];
  let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
  let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
  let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
  let data = RegressionDataBuilder::new().build_from(data)?;
  let formula = "Y ~ X1 + X2 + X3";
  let model = FormulaRegressionBuilder::new()
      .data(&data)
      .formula(formula)
      .fit()?;
  let parameters = model.parameters;
  let standard_errors = model.se;
  let pvalues = model.pvalues;
  assert_eq!(
      parameters.pairs(),
      vec![
          ("X1", -0.9999999999999745),
          ("X2", 0.00000000000000005637851296924623),
          ("X3", 0.00000000000000008283304597789254),
      ]
  );
  assert_eq!(
      standard_errors.pairs(),
      vec![
          ("X1", 0.00000000000019226371555402852),
          ("X2", 0.0000000000000008718958950659518),
          ("X3", 0.0000000000000005323837152041135),
      ]
  );
  assert_eq!(
      pvalues.pairs(),
      vec![
          ("X1", 0.00000000000012239888283055414),
          ("X2", 0.9588921357097694),
          ("X3", 0.9017368322742073),
      ]
  );
  # Ok(())
  # }
  ```

  [`RegressionModel`]: struct.RegressionModel.html
  [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
  [`FormulaRegressionBuilder.formula`]: struct.FormulaRegressionBuilder.html#method.formula
*/

#![warn(rust_2018_idioms)]
#![cfg_attr(feature = "unstable", feature(test))]
use std::borrow::Cow;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::iter;

use nalgebra::{DMatrix, DVector, RowDVector};

pub use error::{Error, InconsistentSlopes};
use special_functions::stdtr;

mod error;
mod special_functions;

macro_rules! ensure {
    ($predicate:expr, $error:expr) => {
        if !$predicate {
            return Err($error);
        }
    };
}

/// A builder to create and fit a linear regression model.
///
/// Given a dataset and a regression formula this builder
/// will produce an ordinary least squared linear regression model.
///
/// See [`formula`] and [`data`] for details on how to configure this builder.
///
/// The pseudo inverse method is used to fit the model.
///
/// # Usage
///
/// ```
/// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
///
/// # use linregress::Error;
/// # fn main() -> Result<(), Error> {
/// let y = vec![1., 2. ,3., 4.];
/// let x = vec![4., 3., 2., 1.];
/// let data = vec![("Y", y), ("X", x)];
/// let data = RegressionDataBuilder::new().build_from(data)?;
/// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X").fit()?;
/// assert_eq!(model.parameters.intercept_value, 4.999999999999998);
/// assert_eq!(model.parameters.regressor_values[0], -0.9999999999999989);
/// assert_eq!(model.parameters.regressor_names[0], "X");
/// # Ok(())
/// # }
/// ```
///
/// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
/// [`data`]: struct.FormulaRegressionBuilder.html#method.data
#[derive(Debug, Clone)]
pub struct FormulaRegressionBuilder<'a> {
    data: Option<&'a RegressionData<'a>>,
    formula: Option<Cow<'a, str>>,
}

impl<'a> Default for FormulaRegressionBuilder<'a> {
    fn default() -> Self {
        FormulaRegressionBuilder::new()
    }
}

impl<'a> FormulaRegressionBuilder<'a> {
    /// Create as new FormulaRegressionBuilder with no data or formula set.
    pub fn new() -> Self {
        FormulaRegressionBuilder {
            data: None,
            formula: None,
        }
    }

    /// Set the data to be used for the regression.
    ///
    /// The data has to be given as a reference to a [`RegressionData`] struct.
    /// See [`RegressionDataBuilder`] for details.
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn data(mut self, data: &'a RegressionData<'a>) -> Self {
        self.data = Some(data);
        self
    }

    /// Set the formula to use for the regression.
    ///
    /// The expected format is `<regressand> ~ <regressor 1> + <regressor 2>`.
    ///
    /// E.g. for a regressand named Y and three regressors named A, B and C
    /// the correct format would be `Y ~ A + B + C`.
    ///
    /// Note that there is currently no special support for categorical variables.
    /// So if you have a categorical variable with more than two distinct values
    /// or values that are not `0` and `1` you will need to perform "dummy coding" yourself.
    pub fn formula<T: Into<Cow<'a, str>>>(mut self, formula: T) -> Self {
        self.formula = Some(formula.into());
        self
    }

    /// Fits the model and returns a [`RegressionModel`] if successful.
    /// You need to set the data with [`data`] and a formula with [`formula`]
    /// before you can use it.
    ///
    /// [`RegressionModel`]: struct.RegressionModel.html
    /// [`data`]: struct.FormulaRegressionBuilder.html#method.data
    /// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
    pub fn fit(self) -> Result<RegressionModel, Error> {
        let FittingData(input_vector, output_matrix, outputs) =
            Self::get_matrices_and_regressor_names(self)?;
        RegressionModel::try_from_matrices_and_regressor_names(input_vector, output_matrix, outputs)
    }

    /// Like [`fit`] but does not perfom any statistics on the resulting model.
    /// Returns a [`RegressionParameters`] struct containing the model parameters
    /// if successfull.
    ///
    /// This is usefull if you do not care about the statistics or the model and data
    /// you want to fit result in too few residual degrees of freedom to perform
    /// statistics.
    ///
    /// [`fit`]: struct.FormulaRegressionBuilder.html#method.fit
    /// [`RegressionParameters`]: struct.RegressionParameters.html
    pub fn fit_without_statistics(self) -> Result<RegressionParameters, Error> {
        let FittingData(input_vector, output_matrix, output_names) =
            Self::get_matrices_and_regressor_names(self)?;
        let low_level_result = fit_ols_pinv(input_vector, output_matrix)?;
        let parameters = low_level_result.params;
        let intercept = parameters[0];
        let slopes: Vec<_> = parameters.iter().cloned().skip(1).collect();
        ensure!(
            output_names.len() == slopes.len(),
            Error::InconsistentSlopes(InconsistentSlopes::new(output_names.len(), slopes.len()))
        );
        Ok(RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        })
    }

    fn get_matrices_and_regressor_names(self) -> Result<FittingData, Error> {
        let data: Result<_, Error> = self.data.ok_or_else(|| Error::NoData);
        let formula: Result<_, Error> = self.formula.ok_or_else(|| Error::NoFormula);
        let data = &data?.data;
        let formula = formula?;
        let split_formula: Vec<_> = formula.split('~').collect();
        ensure!(split_formula.len() == 2, Error::InvalidFormula);
        let input = split_formula[0].trim();
        let outputs: Vec<_> = split_formula[1]
            .split('+')
            .map(str::trim)
            .filter(|x| *x != "")
            .collect();
        ensure!(!outputs.is_empty(), Error::InvalidFormula);
        let input_vector = data
            .get(input)
            .ok_or_else(|| Error::ColumnNotInData(input.into()))?;
        let input_vector = RowDVector::from_vec(input_vector.to_vec());
        let mut output_matrix = Vec::new();
        // Add column of all ones as the first column of the matrix
        let all_ones_column = iter::repeat(1.).take(input_vector.len());
        output_matrix.extend(all_ones_column);
        // Add each input as a new column of the matrix
        for output in outputs.to_owned() {
            let output_vec = data
                .get(output)
                .ok_or_else(|| Error::ColumnNotInData(output.into()))?;
            ensure!(
                output_vec.len() == input_vector.len(),
                Error::RegressorRegressandDimensionMismatch(output.into())
            );
            output_matrix.extend(output_vec.iter());
        }
        let output_matrix = DMatrix::from_vec(input_vector.len(), outputs.len() + 1, output_matrix);
        let outputs: Vec<_> = outputs.iter().map(|x| x.to_string()).collect();
        Ok(FittingData(input_vector, output_matrix, outputs))
    }
}

/// A simple tuple struct to reduce the type complxity of the
/// return type of get_matrices_and_regressor_names.
#[derive(Debug, Clone)]
struct FittingData(RowDVector<f64>, DMatrix<f64>, Vec<String>);

/// A container struct for the regression data.
///
/// This struct is obtained using a [`RegressionDataBuilder`].
///
/// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
#[derive(Debug, Clone)]
pub struct RegressionData<'a> {
    data: HashMap<Cow<'a, str>, Vec<f64>>,
}

impl<'a> RegressionData<'a> {
    /// Constructs a new `RegressionData` struct from any collection that
    /// implements the `IntoIterator` trait.
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that can be converted to a `Cow<'a, str>`.
    ///
    /// `invalid_value_handling` specifies what to do if invalid data is encountered.
    fn new<I, S>(
        data: I,
        invalid_value_handling: InvalidValueHandling,
    ) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        let temp: HashMap<_, _> = data
            .into_iter()
            .map(|(key, value)| (key.into(), value))
            .collect();
        let first_key = temp.keys().next();
        ensure!(
            first_key.is_some(),
            Error::RegressionDataError("The data contains no columns.".into())
        );
        let first_key = first_key.unwrap();
        let first_len = temp[first_key].len();
        ensure!(
            first_len > 0,
            Error::RegressionDataError("The data contains an empty column.".into())
        );
        for key in temp.keys() {
            let this_len = temp[key].len();
            ensure!(
                this_len == first_len,
                Error::RegressionDataError(
                    "The lengths of the columns in the given data are inconsistent.".into()
                )
            );
            ensure!(
                !key.contains('~') && !key.contains('+'),
                Error::RegressionDataError(
                    "The column names may not contain `~` or `+`, because they are used \
                             as separators in the formula."
                        .into()
                )
            );
        }
        if Self::check_if_all_columns_are_equal(&temp) {
            return Err(Error::RegressionDataError(
                "All input columns contain only equal values. Fitting this model would lead \
                     to invalid statistics."
                    .into(),
            ));
        }
        if Self::check_if_data_is_valid(&temp) {
            return Ok(Self { data: temp });
        }
        match invalid_value_handling {
            InvalidValueHandling::ReturnError => Err(Error::RegressionDataError(
                "The data contains a non real value (NaN or infinity or negative infinity). \
                 If you would like to silently drop these values configure the builder with \
                 InvalidValueHandling::DropInvalid."
                    .into(),
            )),
            InvalidValueHandling::DropInvalid => {
                let temp = Self::drop_invalid_values(temp);
                let first_key = temp.keys().next().expect("Cleaned data has no columns.");
                let first_len = temp[first_key].len();
                ensure!(
                    first_len > 0,
                    Error::RegressionDataError("The cleaned data is empty.".into())
                );
                Ok(Self { data: temp })
            }
        }
    }

    fn check_if_all_columns_are_equal(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.is_empty() {
                return false;
            }
            let first_iter = iter::repeat(&column[0]).take(column.len());
            if !first_iter.eq(column.iter()) {
                return false;
            }
        }
        true
    }

    fn check_if_data_is_valid(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.iter().any(|x| !x.is_finite()) {
                return false;
            }
        }
        true
    }

    fn drop_invalid_values(
        data: HashMap<Cow<'a, str>, Vec<f64>>,
    ) -> HashMap<Cow<'a, str>, Vec<f64>> {
        let mut invalid_rows: BTreeSet<usize> = BTreeSet::new();
        for column in data.values() {
            for (index, value) in column.iter().enumerate() {
                if !value.is_finite() {
                    invalid_rows.insert(index);
                }
            }
        }
        let mut cleaned_data = HashMap::new();
        for (key, mut column) in data {
            for index in invalid_rows.iter().rev() {
                column.remove(*index);
            }
            cleaned_data.insert(key, column);
        }
        cleaned_data
    }
}

/// A builder to create a RegressionData struct for use with a [`FormulaRegressionBuilder`].
///
/// [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
#[derive(Debug, Clone, Copy)]
pub struct RegressionDataBuilder {
    handle_invalid_values: InvalidValueHandling,
}

impl Default for RegressionDataBuilder {
    fn default() -> RegressionDataBuilder {
        RegressionDataBuilder {
            handle_invalid_values: InvalidValueHandling::default(),
        }
    }
}

impl RegressionDataBuilder {
    /// Create a new [`RegressionDataBuilder`].
    ///
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn new() -> Self {
        Self::default()
    }

    /// Configure how to handle non real `f64` values (NaN or infinity or negative infinity) using
    /// a variant of the [`InvalidValueHandling`] enum.
    ///
    /// The default value is [`ReturnError`].
    ///
    /// # Example
    /// ```
    /// use linregress::{InvalidValueHandling, RegressionDataBuilder};
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let builder = RegressionDataBuilder::new();
    /// let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`InvalidValueHandling`]: enum.InvalidValueHandling.html
    /// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
    pub fn invalid_value_handling(mut self, setting: InvalidValueHandling) -> Self {
        self.handle_invalid_values = setting;
        self
    }

    /// Build a [`RegressionData`] struct from the given data.
    ///
    /// Any type that implements the [`IntoIterator`] trait can be used for the data.
    /// This could for example be a [`Hashmap`] or a [`Vec`].
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that implements `Into<Cow<str>>`, such as [`String`] or [`str`].
    ///
    /// You can think of this format as the representation of a table of data where
    /// each tuple `(S, Vec<f64>)` represents a column. The `S` is the header or label of the
    /// column and the `Vec<f64>` contains the data of the column.
    ///
    /// Because `~` and `+` are used as separators in the formula they may not be used in the name
    /// of a data column.
    ///
    /// # Example
    ///
    /// ```
    /// use std::collections::HashMap;
    /// use linregress::RegressionDataBuilder;
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let mut data1 = HashMap::new();
    /// data1.insert("Y", vec![1., 2., 3., 4.]);
    /// data1.insert("X", vec![4., 3., 2., 1.]);
    /// let regression_data1 = RegressionDataBuilder::new().build_from(data1)?;
    ///
    /// let y = vec![1., 2., 3., 4.];
    /// let x = vec![4., 3., 2., 1.];
    /// let data2 = vec![("X", x), ("Y", y)];
    /// let regression_data2 = RegressionDataBuilder::new().build_from(data2)?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
    /// [`Hashmap`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html
    /// [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
    /// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html
    /// [`str`]: https://doc.rust-lang.org/std/primitive.str.html
    pub fn build_from<'a, I, S>(self, data: I) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        Ok(RegressionData::new(data, self.handle_invalid_values)?)
    }
}

/// How to proceed if given non real `f64` values (NaN or infinity or negative infinity).
///
/// Used with [`RegressionDataBuilder.invalid_value_handling`]
///
/// The default is [`ReturnError`].
///
/// [`RegressionDataBuilder.invalid_value_handling`]: struct.RegressionDataBuilder.html#method.invalid_value_handling
/// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum InvalidValueHandling {
    /// Return an error to the caller.
    ReturnError,
    /// Drop the columns containing the invalid values.
    DropInvalid,
}

impl Default for InvalidValueHandling {
    fn default() -> InvalidValueHandling {
        InvalidValueHandling::ReturnError
    }
}

/// A fitted regression model.
///
/// Is the result of [`FormulaRegressionBuilder.fit()`].
///
/// If a field has only one value for the model it is given as `f64`.
///
/// Otherwise it is given as a [`RegressionParameters`] struct.
///
///[`RegressionParameters`]: struct.RegressionParameters.html
///[`FormulaRegressionBuilder.fit()`]: struct.FormulaRegressionBuilder.html#method.fit
#[derive(Debug, Clone)]
pub struct RegressionModel {
    /// The model's intercept and slopes (also known as betas).
    pub parameters: RegressionParameters,
    /// The standard errors of the parameter estimates.
    pub se: RegressionParameters,
    /// Sum of squared residuals.
    pub ssr: f64,
    /// R-squared of the model.
    pub rsquared: f64,
    /// Adjusted R-squared of the model.
    pub rsquared_adj: f64,
    /// The two-tailed p-values for the t-statistics of the params.
    pub pvalues: RegressionParameters,
    /// The residuals of the model.
    pub residuals: RegressionParameters,
    ///  A scale factor for the covariance matrix.
    ///
    ///  Note that the square root of `scale` is often
    ///  called the standard error of the regression.
    pub scale: f64,
}

impl RegressionModel {
    /// Evaluates the model on given new input data and returns the predicted values.
    ///
    /// The new data is expected to have the same columns as the original data.
    /// See [`RegressionDataBuilder.build`] for details on the type of the `new_data` parameter.
    ///
    /// ## Note
    ///
    /// This function does *no* special handling of non real values (NaN or infinity or negative infinity).
    /// Such a value in `new_data` will result in a corresponding meaningless prediction.
    ///
    /// ## Example
    ///
    /// ```
    /// # use linregress::{RegressionDataBuilder, FormulaRegressionBuilder};
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let y = vec![1., 2., 3., 4., 5.];
    /// let x1 = vec![5., 4., 3., 2., 1.];
    /// let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
    /// let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
    /// let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
    /// let data = RegressionDataBuilder::new().build_from(data).unwrap();
    /// let formula = "Y ~ X1 + X2 + X3";
    /// let model = FormulaRegressionBuilder::new()
    ///     .data(&data)
    ///     .formula(formula)
    ///     .fit()?;
    /// let new_data = vec![
    ///     ("X1", vec![2.5, 3.5]),
    ///     ("X2", vec![2.0, 8.0]),
    ///     ("X3", vec![2.0, 1.0]),
    /// ];
    /// let prediction: Vec<f64> = model.predict(new_data)?;
    /// assert_eq!(prediction, vec![3.5000000000000275, 2.5000000000000533]);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`RegressionDataBuilder.build`]: struct.RegressionDataBuilder.html#method.build_from
    pub fn predict<'a, I, S>(&self, new_data: I) -> Result<Vec<f64>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        let new_data: HashMap<Cow<'_, _>, Vec<f64>> = new_data
            .into_iter()
            .map(|(key, value)| (key.into(), value))
            .collect();
        self.check_variables(&new_data)?;
        let input_len = new_data.values().next().unwrap().len();
        let mut new_data_values: Vec<f64> = vec![];
        for key in &self.parameters.regressor_names {
            new_data_values.extend_from_slice(new_data[&Cow::from(key)].as_slice());
        }
        let new_data_matrix = DMatrix::from_vec(
            input_len,
            self.parameters.regressor_values.len(),
            new_data_values,
        );
        let param_matrix = DMatrix::from_iterator(
            self.parameters.regressor_values.len(),
            1,
            self.parameters.regressor_values.iter().copied(),
        );
        let intercept = self.parameters.intercept_value;
        let intercept_matrix =
            DMatrix::from_iterator(input_len, 1, std::iter::repeat(intercept).take(input_len));
        let predictions = (new_data_matrix * param_matrix) + intercept_matrix;
        let predictions: Vec<f64> = predictions.into_iter().copied().collect();
        Ok(predictions)
    }

    fn check_variables<'a>(
        &self,
        given_parameters: &HashMap<Cow<'a, str>, Vec<f64>>,
    ) -> Result<(), Error> {
        ensure!(!given_parameters.is_empty(), Error::NoData);
        let first_len = given_parameters.values().next().unwrap().len();
        ensure!(first_len > 0, Error::NoData);
        ensure!(
            self.parameters.regressor_names.len() == self.parameters.regressor_values.len(),
            Error::InconsistentRegressionModel
        );
        let model_parameters: HashSet<_> = self
            .parameters
            .regressor_names
            .iter()
            .map(Cow::from)
            .collect();
        for param in &model_parameters {
            if !given_parameters.contains_key(param) {
                return Err(Error::ColumnNotInData(param.to_string()));
            }
        }
        for (param, values) in given_parameters {
            ensure!(values.len() == first_len, Error::InconsistentVectors);
            if !model_parameters.contains(param) {
                return Err(Error::ModelColumnNotInData(param.to_string()));
            }
        }
        Ok(())
    }

    fn try_from_matrices_and_regressor_names<I: IntoIterator<Item = String>>(
        inputs: RowDVector<f64>,
        outputs: DMatrix<f64>,
        output_names: I,
    ) -> Result<Self, Error> {
        let low_level_result = fit_ols_pinv(inputs.to_owned(), outputs.to_owned())?;
        let parameters = low_level_result.params;
        let singular_values = low_level_result.singular_values;
        let normalized_cov_params = low_level_result.normalized_cov_params;
        let diag = DMatrix::from_diagonal(&singular_values);
        let rank = &diag.rank(0.0);
        let input_vec: Vec<_> = inputs.iter().cloned().collect();
        let input_matrix = DMatrix::from_vec(inputs.len(), 1, input_vec);
        let residuals = &input_matrix - (outputs * parameters.to_owned());
        let ssr = residuals.dot(&residuals);
        let n = inputs.ncols();
        let df_resid = n - rank;
        ensure!(
            df_resid >= 1,
            Error::ModelFittingError(
                "There are not enough residual degrees of freedom to perform statistics on this model".into()));
        let scale = residuals.dot(&residuals) / df_resid as f64;
        let cov_params = normalized_cov_params * scale;
        let se = get_se_from_cov_params(&cov_params)?;
        let centered_input_matrix = subtract_value_from_matrix(&input_matrix, input_matrix.mean());
        let centered_tss = &centered_input_matrix.dot(&centered_input_matrix);
        let rsquared = 1. - (ssr / centered_tss);
        let rsquared_adj = 1. - ((n - 1) as f64 / df_resid as f64 * (1. - rsquared));
        let tvalues: Vec<_> = parameters
            .iter()
            .zip(se.iter())
            .map(|(x, y)| x / y)
            .collect();
        let pvalues: Vec<_> = tvalues
            .iter()
            .cloned()
            .map(|x| stdtr(df_resid as i64, -(x.abs())) * 2.)
            .collect();
        // Convert these from interal Matrix types to user facing types
        let intercept = parameters[0];
        let slopes: Vec<_> = parameters.iter().cloned().skip(1).collect();
        let output_names: Vec<_> = output_names.into_iter().collect();
        ensure!(
            output_names.len() == slopes.len(),
            Error::InconsistentSlopes(InconsistentSlopes::new(output_names.len(), slopes.len(),))
        );
        let parameters = RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        };
        let se: Vec<_> = se.iter().cloned().collect();
        let se = RegressionParameters {
            intercept_value: se[0],
            regressor_values: se.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let residuals: Vec<_> = residuals.iter().cloned().collect();
        let residuals = RegressionParameters {
            intercept_value: residuals[0],
            regressor_values: residuals.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let pvalues = RegressionParameters {
            intercept_value: pvalues[0],
            regressor_values: pvalues.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        Ok(Self {
            parameters,
            se,
            ssr,
            rsquared,
            rsquared_adj,
            pvalues,
            residuals,
            scale,
        })
    }
}

/// A parameter of a fitted [`RegressionModel`] given for the intercept and each regressor.
///
/// The values and names of the regressors are given in the same order.
///
/// You can obtain name value pairs using [`pairs`].
///
/// [`RegressionModel`]: struct.RegressionModel.html
/// [`pairs`]: struct.RegressionParameters.html#method.pairs
#[derive(Debug, Clone)]
pub struct RegressionParameters {
    pub intercept_value: f64,
    pub regressor_names: Vec<String>,
    pub regressor_values: Vec<f64>,
}

impl RegressionParameters {
    /// Returns the parameters as a Vec of tuples of the form `(name: &str, value: f64)`.
    ///
    /// # Usage
    ///
    /// ```
    /// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let y = vec![1.,2. ,3. , 4.];
    /// let x1 = vec![4., 3., 2., 1.];
    /// let x2 = vec![1., 2., 3., 4.];
    /// let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
    /// let data = RegressionDataBuilder::new().build_from(data)?;
    /// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X1 + X2").fit()?;
    /// let pairs = model.parameters.pairs();
    /// assert_eq!(pairs[0], ("X1", -0.0370370370370372));
    /// assert_eq!(pairs[1], ("X2", 0.9629629629629629));
    /// # Ok(())
    /// # }
    /// ```
    pub fn pairs(&self) -> Vec<(&str, f64)> {
        self.regressor_names
            .iter()
            .zip(self.regressor_values.iter())
            .map(|(x, y)| (x.as_str(), *y))
            .collect()
    }
}

/// Result of fitting a low level matrix based model
#[derive(Debug, Clone)]
struct LowLevelRegressionResult {
    params: DMatrix<f64>,
    singular_values: DVector<f64>,
    normalized_cov_params: DMatrix<f64>,
}

/// Performs ordinary least squared linear regression using the pseudo inverse method.
///
/// Returns a tuple `LowLevelRegressionResult`
fn fit_ols_pinv(
    inputs: RowDVector<f64>,
    outputs: DMatrix<f64>,
) -> Result<LowLevelRegressionResult, Error> {
    ensure!(
        !inputs.is_empty(),
        Error::ModelFittingError(
            "Fitting the model failed because the input vector is empty".into()
        )
    );
    ensure!(
        outputs.nrows() >= 1 && outputs.ncols() >= 1,
        Error::ModelFittingError(
            "Fitting the model failed because the output matrix is empty".into()
        )
    );
    let singular_values = outputs
        .to_owned()
        .try_svd(false, false, std::f64::EPSILON, 0)
        .ok_or_else(|| {
            Error::ModelFittingError(
                "computing the singular-value decomposition of the output matrix failed".into(),
            )
        })?
        .singular_values;
    let pinv = outputs.pseudo_inverse(0.).map_err(|_| {
        Error::ModelFittingError("Taking the pinv of the output matrix failed".into())
    });
    let pinv = pinv?;
    let normalized_cov_params = &pinv * &pinv.transpose();
    let params = get_sum_of_products(&pinv, &inputs);
    ensure!(
        params.len() >= 2,
        Error::ModelFittingError("Invalid parameter matrix".into())
    );
    Ok(LowLevelRegressionResult {
        params,
        singular_values,
        normalized_cov_params,
    })
}

/// Subtracts `value` from all fields in `matrix` and returns the resulting new matrix.
fn subtract_value_from_matrix(matrix: &DMatrix<f64>, value: f64) -> DMatrix<f64> {
    let nrows = matrix.nrows();
    let ncols = matrix.ncols();
    let substraction_matrix: DMatrix<f64> =
        DMatrix::from_iterator(nrows, ncols, std::iter::repeat(value).take(nrows * ncols));
    matrix - substraction_matrix
}

/// Calculates the standard errors given a model's covariate parameters
fn get_se_from_cov_params(matrix: &DMatrix<f64>) -> Result<DMatrix<f64>, Error> {
    let mut v = Vec::new();
    for row_index in 0..matrix.ncols() {
        let row = matrix.row(row_index);
        ensure!(
            row_index <= row.len(),
            Error::ModelFittingError("Matrix is not square".into())
        );
        v.push(row[row_index].sqrt());
    }
    Ok(DMatrix::from_vec(matrix.ncols(), 1, v))
}

fn get_sum_of_products(matrix: &DMatrix<f64>, vector: &RowDVector<f64>) -> DMatrix<f64> {
    let mut v: Vec<f64> = Vec::new();
    for row_index in 0..matrix.nrows() {
        let row = matrix.row(row_index);
        let mut sum = 0.;
        for (x, y) in row.iter().zip(vector.iter()) {
            sum += x * y;
        }
        v.push(sum);
    }
    DMatrix::from_vec(matrix.nrows(), 1, v)
}

#[cfg(test)]
mod tests {
    use super::*;
    fn assert_almost_equal(a: f64, b: f64) {
        assert_almost_equal_with_precision(a, b, 1.0E-14);
    }

    fn assert_almost_equal_with_precision(a: f64, b: f64, precision: f64) {
        if (a - b).abs() > precision {
            panic!("\n{:?} vs\n{:?}", a, b);
        }
    }

    fn assert_slices_almost_equal(a: &[f64], b: &[f64]) {
        assert_eq!(a.len(), b.len());
        for (x, y) in a.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>() {
            assert_almost_equal(x, y);
        }
    }

    #[test]
    fn test_pinv_with_formula_builder() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit()
            .expect("Fitting model failed");

        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        let se = vec![
            0.015457637291218289,
            0.1417242813072997,
            0.14172428130729975,
        ];
        let ssr = 9.107142857142858;
        let rsquared = 0.16118421052631582;
        let rsquared_adj = -0.006578947368421018;
        let scale = 1.8214285714285716;
        let pvalues = vec![
            0.001639031204417556,
            0.016044083709847945,
            0.13074580446389245,
        ];
        let residuals = vec![
            -1.392857142857142,
            0.3571428571428581,
            1.1071428571428577,
            1.8571428571428577,
            -1.3928571428571423,
            -0.6428571428571423,
            0.10714285714285765,
        ];
        assert_almost_equal(regression.parameters.intercept_value, model_parameters[0]);
        assert_almost_equal(
            regression.parameters.regressor_values[0],
            model_parameters[1],
        );
        assert_almost_equal(
            regression.parameters.regressor_values[1],
            model_parameters[2],
        );
        assert_almost_equal(regression.se.intercept_value, se[0]);
        assert_slices_almost_equal(&regression.se.regressor_values, &se[1..]);
        assert_almost_equal(regression.ssr, ssr);
        assert_almost_equal(regression.rsquared, rsquared);
        assert_almost_equal(regression.rsquared_adj, rsquared_adj);
        assert_almost_equal(regression.pvalues.intercept_value, pvalues[0]);
        assert_slices_almost_equal(&regression.pvalues.regressor_values, &pvalues[1..]);
        assert_almost_equal(regression.residuals.intercept_value, residuals[0]);
        assert_slices_almost_equal(&regression.residuals.regressor_values, &residuals[1..]);
        assert_eq!(regression.scale, scale);
    }

    #[test]
    fn test_without_statistics() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit_without_statistics()
            .expect("Fitting model failed");
        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        assert_almost_equal(regression.intercept_value, model_parameters[0]);
        assert_almost_equal(regression.regressor_values[0], model_parameters[1]);
        assert_almost_equal(regression.regressor_values[1], model_parameters[2]);
    }

    #[test]
    fn test_invalid_input_empty_matrix() {
        let y = vec![];
        let x1 = vec![];
        let x2 = vec![];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_wrong_shape_x() {
        let y = vec![1., 2., 3.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_wrong_shape_y() {
        let y = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2., 3.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_nan() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::NAN];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NAN];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }

    #[test]
    fn test_invalid_input_infinity() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::INFINITY];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NEG_INFINITY];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }

    #[test]
    fn test_invalid_input_all_equal_columns() {
        let y = vec![38.0, 38.0, 38.0];
        let x = vec![42.0, 42.0, 42.0];
        let data = vec![("y", y), ("x", x)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_drop_invalid_values() {
        let mut data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        data.insert("Y".into(), vec![-1., -2., -3., -4.]);
        data.insert("foo".into(), vec![1., 2., 12., 4.]);
        data.insert("bar".into(), vec![1., 1., 7., 4.]);
        data.insert("baz".into(), vec![1.3333, 2.754, 3.12, 4.11]);
        assert_eq!(RegressionData::drop_invalid_values(data.to_owned()), data);
        data.insert(
            "invalid".into(),
            vec![std::f64::NAN, 42., std::f64::NEG_INFINITY, 23.11],
        );
        data.insert(
            "invalid2".into(),
            vec![1.337, -3.14, std::f64::INFINITY, 11.111111],
        );
        let mut ref_data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        ref_data.insert("Y".into(), vec![-2., -4.]);
        ref_data.insert("foo".into(), vec![2., 4.]);
        ref_data.insert("bar".into(), vec![1., 4.]);
        ref_data.insert("baz".into(), vec![2.754, 4.11]);
        ref_data.insert("invalid".into(), vec![42., 23.11]);
        ref_data.insert("invalid2".into(), vec![-3.14, 11.111111]);
        assert_eq!(
            ref_data,
            RegressionData::drop_invalid_values(data.to_owned())
        );
    }

    #[test]
    fn test_all_invalid_input() {
        let data = vec![
            ("Y", vec![1., 2., 3.]),
            ("X", vec![std::f64::NAN, std::f64::NAN, std::f64::NAN]),
        ];
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data = builder.build_from(data);
        assert!(r_data.is_err());
    }

    #[test]
    fn test_invalid_column_names() {
        let data1 = vec![("x~f", vec![1., 2., 3.]), ("foo", vec![0., 0., 0.])];
        let data2 = vec![("foo", vec![1., 2., 3.]), ("foo+", vec![0., 0., 0.])];
        let builder = RegressionDataBuilder::new();
        assert!(builder.build_from(data1).is_err());
        assert!(builder.build_from(data2).is_err());
    }

    fn build_model() -> RegressionModel {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        FormulaRegressionBuilder::new()
            .data(&data)
            .formula(formula)
            .fit()
            .unwrap()
    }

    #[test]
    fn test_prediction_empty_vectors() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![("X1", vec![]), ("X2", vec![]), ("X3", vec![])]
            .into_iter()
            .map(|(x, y)| (Cow::from(x), y))
            .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction_vectors_with_different_lengths() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![
            ("X1", vec![1.0, 2.0]),
            ("X2", vec![2.0, 1.0]),
            ("X3", vec![3.0]),
        ]
        .into_iter()
        .map(|(x, y)| (Cow::from(x), y))
        .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_too_many_prediction_variables() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![
            ("X1", vec![1.0]),
            ("X2", vec![2.0]),
            ("X3", vec![3.0]),
            ("X4", vec![4.0]),
        ]
        .into_iter()
        .map(|(x, y)| (Cow::from(x), y))
        .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_not_enough_prediction_variables() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![("X1", vec![1.0]), ("X2", vec![2.0])]
            .into_iter()
            .map(|(x, y)| (Cow::from(x), y))
            .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction_broken_model() {
        let mut model = build_model();
        model.parameters.regressor_values = vec![];
        let new_data: HashMap<Cow<'_, _>, _> =
            vec![("X1", vec![1.0]), ("X2", vec![2.0]), ("X3", vec![3.0])]
                .into_iter()
                .map(|(x, y)| (Cow::from(x), y))
                .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction() {
        let model = build_model();
        let new_data = vec![("X1", vec![2.5]), ("X2", vec![2.0]), ("X3", vec![2.0])];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 1);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
    }

    #[test]
    fn test_multiple_predictions() {
        let model = build_model();
        let new_data = vec![
            ("X1", vec![2.5, 3.5]),
            ("X2", vec![2.0, 8.0]),
            ("X3", vec![2.0, 1.0]),
        ];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 2);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
        assert_almost_equal_with_precision(prediction[1], 2.5000000000001337, 1.0E-7);
    }

    #[test]
    fn test_multiple_predictions_out_of_order() {
        let model = build_model();
        let new_data = vec![
            ("X1", vec![2.5, 3.5]),
            ("X3", vec![2.0, 1.0]),
            ("X2", vec![2.0, 8.0]),
        ];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 2);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
        assert_almost_equal_with_precision(prediction[1], 2.5000000000001337, 1.0E-7);
    }
}

#[cfg(all(feature = "unstable", test))]
mod bench {
    use super::*;
    extern crate test;
    use test::Bencher;

    #[bench]
    fn bench_with_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit()
        });
    }

    #[bench]
    fn bench_without_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit_without_statistics()
        });
    }
}